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Chapter 10
MULTIGRID STRATEGIES

10.1 Motivation

The 1dea of systematically using sets of coarser grids to accelerate the convergence of
iterative schemes that arise from the numerical solution to partial differential equa-
tions was made popular by the work of Brandt. There are many variations of the
process, which is by no means unique, and many viewpoints of the underlying theory.
The viewpoint presented here is a natural extension of the concepts discussed above.

10.1.1 Eigenvector and Eigenvalue Identification with Space
Frequencies

Consider the eigensystem of the model matrix B(%, -1, %) The eigenvalues and
eigenvectors for M = 5 are given in Eqgs. 9.53 and 9.52. respectively. Notice that as the
magnitudes of the eigenvalues increase, the space-frequency (number of sign changes)
of the corresponding eigenvectors also increase. This has a rational explanation from
the origin of the banded matrix. Note that

2
% sin(mz) = —m? sin(mz) (10.1)
T
and recall that

We have seen that X_1<Z represents a sine transform, and X(Z, a sine synthesis. There-
fore, the operation ﬁD(A) represents the numerical approximation of the multipli-
cation of the appropriate sine wave by the negative square of its frequency, —m?. One

finds that
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172 CHAPTER 10. MULTIGRID STRATEGIES

1 M +1\? mn 9
@/\m:< - )[—2+QCOS<M+1)]%—m .m << M (10.3)

Hence, the correlation of large magnitudes of \,, with high space-frequencies is to
be expected for these particular matrix operators. However, this correlation is not
necessary in general. In fact, the complete counterexample of the above association is
contained in the eigensystem for B(%, 1, %) For this matrix one finds, from Appendix
. exactly the opposite behavior.

10.1.2 Properties of the Iterative Process

First of all we assume that the difference equations representing the basic partial
differential equations are in a form that can be related to a matrix which has certain
basic properties. This form can be arrived at “naturally” by simply replacing the
derivatives in the PDE with difference schemes. as in the example given by Eq. 3.22,
or it can be “contrived” by further conditioning, as in the examples given by Eq. 9.7.
These basic properties are:

1. The eigenvalues, A,,. of the matrix are all real and negative.

2. The X, are fairly evenly distributed between their maximum and minimum
values.

3. The eigenvectors associated with the eigenvalues having largest magnitudes can
be correlated with high frequencies on the differencing mesh.

These conditions are sufficient to ensure the validity of the process described next.

Having preconditioned (if necessary) the basic finite differencing scheme by a
procedure equivalent to the multiplication by a matrix €', we are led to the starting
formulation

ClAss — f1] =0 (10.4)

where the matrix formed by the product C Aj; has the three properties given above. In
Eq. 10.4, the vector fb represents the boundary conditions and the forcing function,
if any, and q_b’oc is a vector representing the desired exact solution. We start with some
initial guess for qZOC and proceed through n iterations making use of some iterative
process that greatly reduces the amplitudes of the eigenvectors associated with the

eigenvalues in the range between |A|, . and |\l We do not attempt to develop

max max*
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an optimum procedure here, but for clarity we suppose that the three-step Richardson
method illustrated in Fig. 9.7 is used. At the end of the three steps we find r, the
residual, where

r = ClAd — J)] (10.5)

Recall that the 5 used to compute ris composed of the exact solution q_b)oc and the
error e in such a way that

Ae—1=0 (10.6)
where
A=CA, (10.7)
If one could solve Eq. 10.6 for e then
b.=d—c¢ (10.8)

Now we can write the exact solution for € in terms of the eigenvectors of A, and the
o eigenvalues of the Richardson process in the form:

L, M2 3 M L 3
e = Z_: Con T 1:[ [cAmbn) + D Cnm 1:[ [0(Amhbm)] (10.9)

m=M/2+1

very low amplitude

Combining the properties of the Richardson algorithm and our three basic properties,
we can be sure that the high frequency content of ¢ has been greatly reduced (about
1% or less of its original value in the initial guess).

Next we construct a permutation matrix which separates a vector into two parts,
one containing the odd entries, and the other the even entries of the original matrix
(or any other appropriate sorting which is consistent with the interpolation approxi-
mation to be discussed below). For example

e 01 00000][e
€4 000100 0]]|e

e 00000TO0]]|es -

e1 |={1000000]]|e ;[SE]:PE (10.10)
es 001000 0]]es co

es 0000T100]]|e

er | (000000 1]][er|
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Multiply Eqg. 10.6 from the left by P and. since a permutation matrix has an inverse
which is its transpose, we can write

PA[P~'Ple = Pr (10.11)

The operation PAP~! partitions the A matrix to form

Al A2 - -
l S ] - lie ] (10.12)
As Ay €o To
Notice that
Ajec + Ageg =7, (10.13)

is an exact expression. At this point we make our one crucial assumption. It is that
there is some connection between e. and e, brought about by the smoothing property
of the Richardson relaxation procedure. Since the top half of the frequency spectrum
has been removed, it is reasonable to suppose that the odd points are the average of
the even points. For example

1
e~ §(€a—|-62)
1
€3 = 5(62 + 64)
1 — -
€5 R~ 5(64 + €6) or g = Aje, (10.14)
1

er ~ 5(66—|-€b)

L

It is important to notice that e, and e, represent errors on the boundaries where
the error is zero if the boundary conditions are given. It is also important to no-
tice that we are dealing with the relation between e and 1 so the original boundary
conditions and forcing function (which are contained in ]_E in the basic formulation)
no longer appear in the problem. Hence. no aliasing of these functions can occur in
subsequent steps. Finally, notice that, in this formulation, the averaging of e is our
only approximation, no operations on r are required or justified.

If the boundary conditions are Dirichlet, e, and ¢, are zero, and one can write for
the example case
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1 00
If1 10
I —

A, = 5o 11 (10.15)

0 01

With this approximation Eq. 10.11 reduces to
Acee —1.=0

where A, = [A1 + AR AY) (10.16)

The form of A., the matrix on the coarse mesh, is completely determined by the
choice of the permutation matrix and the interpolation approximation. If the original
A had been B(1,—2,1), our 7-point example would produce

-2 1
-2 1
-2 1 A, A,
_1_ _
PAP™ = L1 9 = o (10.17)
11 —2 5o
11 -2
L 1 _2_
and Eq. 10.16 gives
Af
Ay Az —_—~ Ac
-2 11 1 1 ! -1 1/2
-2 + 11 '3 L1l = /2 -1 1/2 | (10.18)
-2 11 ) 1/2 -1

This process is deceptively simple. We started with the equation B(1, —2, 1)2 =r
on the fine mesh and reduced the problem to the equation %B(l, -2, 1)5E = 7. on
the next coarser mesh. It appears as if the data on the odd points had been ignored
altogether and a scaling factor had arbitrarily appeared. Such is not the case, however,
and except for the assumption in Eq. 10.14 the process is quite rigorous.
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If the boundary conditions are mixed Dirichlet-Neumann, A in the 1-D model
equation is B(1, Z_): 1) where b= [-2,-2,...,—2,—1]T. The eigensystem is given by
Eq. B.22. It is easy to show that the high space-frequencies still correspond to the
eigenvalues with high magnitudes, and, in fact, all of the properties given in Section
10.1 are met. However, the eigenvector structure is different from that shown in
Fig. 9.4 for Dirichlet conditions. In the present case they are given by

xjm:sm[j(%)] C om=1,2,- M (10.19)

and are illustrated in Fig. reffig:figl0.1. All of them go through zero on the left
(Dirichlet) side, and all of them reflect on the right (Neumann) side, being symmet-
rical about the point m = —I—% where © = 7 and their magnitude is 1.

<1

Figure 10.1: Eigenvectors for the mixed Dirichlet-Neumann case.
For Neumann conditions, the interpolation formula in Eq. 10.14 must be changed.

In the particular case illustrated in Fig. 10.1, ¢, is equal to eps. If Neumann conditions
are on the left. e, = e;. When e, = ey, the example in Eq. 10.15 changes to

(10.20)

[N]
OO = =
O = = O
N — OO

The permutation matrix remains the same and both A; and A, in the partitioned
matrix PAP~! are unchanged (only A4 is modified by putting —1 in the lower right
element). Therefore, we can construct the coarse matrix from
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Ay A —— Ac
—2 11 . 1 , ~1 1/2
—2 + 11 5 L= Y2 - 12 oo
—2 11 . 1/2 —1/2

which gives us what we might have “expected” and shows us that the process is
recursive.

The remaining steps required to complete an entire multigrid process are relatively
straightforward, but they vary depending on the problem and the user. The reduction
can be, and usually is, carried to even coarser grids before returning to the finest level.
However, in each case the appropriate permutation matrix and the interpolation
approximation define both the down- and up-going paths. The details of finding
optimum technique are, obviously, quite important but they are not discussed here.



